Birkhoff Periodic Orbits in the Standard-Like Maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Canonical Partition of the Periodic Orbits of Chaotic Maps

We show that the periodic orbits of an area-contracting horseshoe map can be partitioned into subsets of orbits of minimum period k, 2k, 4k, 8k, ..., for some positive integer k. This partition is natural in the following sense: for any parametrized area-contracting map which forms a horseshoe, the orbits in one subset of the partition are contained in a single component of orbits in the full p...

متن کامل

Comparing Periodic Orbits of Maps of the Interval

Let n and 6 be cyclic permutations of finite ordered sets. We say that n forces 6 if every continuous map of the interval which has a representative of n also has one of 6 . We give a geometric version of Jungreis' combinatorial algorithm for deciding in certain cases whether n forces 9 .

متن کامل

The First Birkhoff Coefficient and the Stability of 2-Periodic Orbits on Billiards

In this work we address the question of proving the stability of elliptic 2-periodic orbits for strictly convex billiards. Eventhough it is part of a widely accepted belief that ellipticity implies stability, classical theorems show that the certainty of stability relies upon more fine conditions. We present a review of the main results and general theorems and describe the procedure to fullfil...

متن کامل

Spatially Periodic Orbits in Coupled Sine Circle Maps

We study spatially periodic orbits for a coupled map lattice of sine circle maps with nearest neighbour coupling and periodic boundary conditions. The stability analysis for an arbitrary spatial period k is carried out in terms of the independent variables of the problem and the stability matrix is reduced to a neat block diagonal form. For a lattice of size kN , we show that the largest eigenv...

متن کامل

Periodic orbits and topological entropy of delayed maps.

The periodic orbits of a nonlinear dynamical system provide valuable insight into the topological and metric properties of its chaotic attractors. In this paper we describe general properties of periodic orbits of dynamical systems with feedback delay. In the case of delayed maps, these properties enable us to provide general arguments about the boundedness of the topological entropy in the hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 2008

ISSN: 1347-4081,0033-068X

DOI: 10.1143/ptp.120.175